BloodPressureHeartMeds.Org

International consortium publishes third-generation map of human genetic variation

April 02, 2017

The researchers assessed the latest generation HapMap for its ability to predict SNPs in other populations. They found that using one population to predict another population's variants works for common variants and for some less-common variants in related populations. However, it does not work well for rare variants in related populations, meaning that rare variants are likely to make much more population-specific contributions to disease. This finding underscores the value of efforts already underway that use efficient 'next-generation' DNA sequencing technologies to sequence large numbers of whole genomes within various populations to find rare variants that contribute to disease.

Many of the HapMap researchers are part of the 1000 Genomes Project, an international public-private consortium launched in 2008 that is building an even more detailed map of human genetic variation. Project researchers are currently using next-generation DNA sequencing technologies to build a public database containing information from the complete genomes of 2,500 people from 27 populations around the world, many of which were studied in the HapMap project. Disease researchers will be able to use the catalogue, which is being developed over the next two years, in their studies of the contribution of common and rarer genetic variation to illness.

The Consortium that produced this latest HapMap included researchers Baylor College of Medicine in Houston; the Broad Institute in Cambridge, Mass.; and the Wellcome Trust Sanger Institute in Hinxton, Cambridge, England. Collaborating researchers worked at Arizona State University, Tempe; Baylor College of Medicine. Houston; Case Western Reserve University, Cleveland; Howard University, Washington, D.C.; the Institute for Oncological Study and Prevention, Florence, Italy; Moi University, Eldoret, Kenya; the University of California, Los Angeles; the University of California, San Francisco; the University of Houston-Clear Lake; and the University of Oklahoma, Norman. Funding was provided by the NHGRI, the National Institute on Deafness and Other Communication Disorders, and the Wellcome Trust.

"The HapMap project has been a stellar example of how improved technologies and dedicated work on obtaining DNA samples from individuals in major populations allows us to provide more detailed resources for studies of human disease," said Richard Gibbs, Ph.D., director of the Human Genome Sequencing Center at the Baylor College of Medicine.

The International HapMap Consortium devoted considerable time and resources to try to ensure that the map was designed, developed and used in a manner that is sensitive to a wide range of ethical and social issues. In addition to getting informed consent from individual sample donors, a careful process of community engagement was conducted with each group approached to participate in the project.

Researchers can access HapMap data through the NIH National Center for Biotechnology Information at hapmap.ncbi.nlm.nih/downloads/index.html.en#release.

Source: NIH/National Human Genome Research Institute